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Preface 

Welcome to the BeviaLLM Playbook — a comprehensive guide to understanding and building a 
GPT-like language model from the ground up using nothing but Python and NumPy. 

This book is designed for developers, students, and curious minds who want to truly understand 
what happens inside a language model. Instead of relying on high-level frameworks that hide 
the complexity behind convenient abstractions, we implement every component manually: from 
embeddings to attention mechanisms, from layer normalization to backpropagation. 

 

What You'll Learn 

How transformers process sequences of text · The mathematics behind attention mechanisms · 
Manual implementation of forward and backward passes · Building an optimizer from scratch · 
Training a character-level language model 

 

Prerequisites 

Comfortable with Python · Basic linear algebra (matrices, vectors) · Familiarity with calculus 
(derivatives, chain rule) · Curiosity and patience 

 

PART I: FOUNDATIONS 

 

Chapter 1: Introduction to BeviaLLM 

1.1 What is BeviaLLM? 

BeviaLLM is an educational implementation of a miniature GPT-like language model. Unlike 
production models with billions of parameters, BeviaLLM is intentionally small — designed to 
run on a laptop CPU in minutes rather than requiring GPU clusters for weeks. 

The name combines "Bevia" (the creator's name) with "LLM" (Large Language Model), though 
in practice it's more of an "SLM" — a Small Language Model built for learning. 

1.2 Why Build From Scratch? 

Modern deep learning frameworks like PyTorch and TensorFlow provide automatic 
differentiation, GPU acceleration, and countless optimized layers. So why implement everything 
manually? 

• Understanding over convenience — when you use torch.nn.Linear you get a working 
layer, but do you truly understand what happens during the backward pass? 
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• Demystifying the "magic" — transformers can feel like black boxes; terms like attention, 
residual connections, and layer normalization become meaningful when you implement 
them with explicit matrix operations. 

• Appreciation for design decisions — why does GPT use pre-normalization? Why causal 
masking? Building from scratch reveals why certain choices matter. 

1.3 Project Philosophy 

BeviaLLM follows three core principles: 

• Readability over speed — the code prioritizes clarity. Every matrix operation is explicit. 
Comments explain the "why," not just the "what." 

• Minimal dependencies — only NumPy is required. No autograd, no CUDA, no 
abstractions you can't trace with a debugger. 

• Hackability — want to try a different activation function? Change one line. Want multi-
head attention? Extend the existing class. 

1.4 What We're Building 

By the end of this journey, you'll have a working language model that can learn patterns from 
text data, generate new text resembling the training data, and demonstrate the core mechanics 
of GPT-style architectures. 

The model operates at the character level — predicting the next character given a sequence of 
previous characters. This is simpler than word-level tokenization but illustrates the same 
principles. 

 

Chapter 2: The Transformer Architecture 

2.1 A Brief History 

In 2017, Vaswani et al. published "Attention Is All You Need," introducing the Transformer 
architecture. This paper replaced recurrent networks with attention mechanisms, enabling 
massive parallelization and setting the stage for models like GPT, BERT, and their successors. 

BeviaLLM implements a decoder-only transformer, similar to GPT, processing sequences left-
to-right and predicting each next token based on all previous tokens. 

2.2 The Big Picture 

At a high level, here's what happens when BeviaLLM processes text: 

 

Stage Component Description 

1 Tokenization Convert characters to integer indices 

2 Embedding Map indices to dense vectors 

3 Position Encoding Add information about token positions 



BeviaLLM Playbook Building a Language Model From Scratch 

© BeviaLLM Project  ·  corebaseit.com Page ‹#› 

4 Transformer Blocks Process through attention and MLPs 

5 Output Layer Project back to vocabulary size 

6 Prediction Sample the next character from probabilities 

 

2.3 Key Components 

A single transformer block contains four key components: 

• Self-Attention — allows each position to "look at" other positions in the sequence, 
capturing dependencies between relevant words. 

• Feed-Forward Network (MLP) — a two-layer network processing each position 
independently, adding computational capacity. 

• Layer Normalization — stabilizes training by normalizing activations. 

• Residual Connections — allow gradients to flow directly through the network, enabling 
deeper architectures. 

2.4 Why "Causal"? 

Our attention is "causal" because each position can only attend to itself and previous positions 
— never future ones. This is essential for generation: when predicting position 5, we can't peek 
at position 6. 

We implement this with a mask that sets future positions to negative infinity before the softmax, 
effectively zeroing their attention weights. 

 

Chapter 3: Mathematics Behind the Model 

3.1 Notation 

 

Symbol Meaning 

B Batch size — number of sequences processed together 

T Sequence length — context window 

C Embedding dimension (also called dim) 

V Vocabulary size — number of unique tokens 

 

3.2 Embeddings 
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An embedding table is a matrix of shape (V, C). To embed a token with index i, we look up the i-
th row. The backward pass for embeddings is straightforward: we accumulate gradients at the 
indices that were used during the forward pass. 

3.3 Attention Mechanics 

Self-attention computes three projections from the input: 

• Query (Q): What am I looking for? 

• Key (K): What do I contain? 

• Value (V): What should I return if matched? 

 

Attention Formula 

Attention(Q, K, V) = softmax( QKᵀ / √dk ) · V  Where dk is the dimension of the keys. The √dk scaling 
prevents dot products from becoming too large, which would push softmax into regions with tiny 
gradients. 

 

3.4 Softmax 

Softmax converts raw scores (logits) into probabilities. For numerical stability, we subtract the 
maximum value before exponentiating — this prevents overflow while producing identical 
results. 

3.5 Cross-Entropy Loss 

We use cross-entropy loss to measure how well our predicted probabilities match the true next 
character. The gradient of cross-entropy with respect to logits has a beautiful, elegant form: 
simply subtract 1 from the probability of the correct class. 

3.6 Layer Normalization 

Layer normalization normalizes across features (the embedding dimension) rather than across 
the batch. The learnable parameters γ and β are initialized to 1 and 0, meaning "start 
normalized, learn to denormalize if helpful." 

 

PART II: IMPLEMENTATION DEEP DIVE 

 

Chapter 4: Project Structure 

4.1 File Organization 

BeviaLLM is organized as a Python package with a clean, modular structure: 
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BeviaLLM/ 

├── main.py           # Training script 

├── data.txt          # Training data 

├── bevialm/ 

│   ├── __init__.py   # Public API exports 

│   ├── data.py       # Data loading, encoding, sampling 

│   ├── layers.py     # Neural network layers 

│   ├── model.py      # The CharTransformerLM class 

│   ├── optimizer.py  # AdamW implementation 

│   └── utils.py      # Helper functions 

 

4.2 Design Decisions 

• Shared parameter dictionaries — instead of storing weights inside each layer object, 
shared params and grads dictionaries make it easy to iterate over all parameters for 
optimization. 

• Cache-based backward pass — each layer stores its forward pass results in a cache 
attribute, which the backward pass retrieves. Explicit dependency injection rather than 
implicit graph building. 

• Naming convention — parameters are named hierarchically, like block0.attn.q.W for the 
query weight matrix in the first block. 

 

Chapter 5: Data Pipeline 

5.1 Loading Text 

The data pipeline starts with raw text. BeviaLLM expects a simple UTF-8 text file and builds a 
character-level vocabulary by finding all unique characters, creating stoi (string-to-int) and itos 
(int-to-string) mappings. 

5.2 Creating Batches 

Training requires random batches of sequences. For each sequence, x contains the input 
tokens (positions 0 to T−1) while y contains the target tokens (positions 1 to T). This offset trains 
the model to predict each next character. 

5.3 Sampling from the Model 

Generation works autoregressively: start with a prompt, feed the sequence to the model, get 
probabilities for the next character, sample from the distribution, append the character, and 
repeat. 

 

Temperature 
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Temperature controls randomness during sampling: • Low (0.5): Conservative, more repetitive • 
Balanced (1.0): Natural distribution • High (1.5): Creative but chaotic 

 

 

Chapter 6: Layers in Detail 

6.1 The Embedding Layer 

The embedding layer is deceptively simple. Forward pass: index into a weight matrix. Backward 
pass: accumulate gradients at those indices. The key insight is that np.add.at handles repeated 
indices correctly — if the same token appears multiple times, gradients accumulate. 

6.2 The Linear Layer 

A linear layer computes y = xW + b. The backward pass derives from the chain rule, computing 
gradients for W, x, and b separately. Inputs are reshaped to 2D for matrix operations, then 
reshaped back. 

6.3 Layer Normalization 

Layer normalization's backward pass involves gradients through the scale and shift parameters 
(γ, β), gradients through the normalization itself, and dependencies on both mean and variance 
— making it one of the more complex backward passes to implement correctly. 

6.4 Causal Self-Attention 

Attention is the heart of the transformer. The forward pass proceeds in six steps: 

• Project input to Q, K, V via three separate linear layers 

• Compute attention scores: QKᵀ / √d 

• Apply causal mask: set future positions to −∞ 

• Softmax: convert to probabilities 

• Apply attention: weight values by attention probabilities 

• Project output: final linear layer 

6.5 The Transformer Block 

A transformer block combines attention and MLP with residual connections. BeviaLLM uses 
"pre-norm" style, where normalization happens before each sublayer. This tends to train more 
stably than post-norm, especially for deeper networks. 

 
x → LayerNorm → Attention → Add(x) → LayerNorm → MLP → Add(x) → output 

         └──────────────────┘                  └──────────────────┘ 

               residual                              residual 
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6.6 Activation Functions 

We use ReLU (Rectified Linear Unit) in the MLP: ReLU(x) = max(0, x). The backward pass is 
simple: gradient passes through where x > 0, and is zero elsewhere. The binary mask is saved 
during forward for use in backward. 

 

Chapter 7: The Model Class 

7.1 CharTransformerLM 

The CharTransformerLM class ties everything together, managing token and position 
embeddings, a stack of transformer blocks, final layer normalization, and the output projection 
(language modeling head). 

7.2 Forward Pass 

 
def forward(self, idx): 

    tok = self.tok_emb.forward(idx)       # Embed tokens 

    pos = self.pos_emb.forward(positions)  # Embed positions 

    x = tok + pos                          # Combine 

    for blk in self.blocks:                # Through blocks 

        x = blk.forward(x) 

    x = self.ln_f.forward(x)               # Final norm 

    logits = self.lm_head.forward(x)       # Project to vocab 

    return logits 

 

7.3 Backward Pass 

The backward pass mirrors the forward pass in reverse, traversing through the language model 
head, final normalization, transformer blocks (in reverse order), and finally the embedding 
layers. 

 

Chapter 8: The AdamW Optimizer 

8.1 Why AdamW? 

Adam (Adaptive Moment Estimation) combines momentum (exponential moving average of 
gradients) with RMSprop (exponential moving average of squared gradients). AdamW adds 
decoupled weight decay, which regularizes better than L2 regularization added to the loss. 
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8.2 The Algorithm 

For each parameter at each step: 

• Update biased first moment estimate: mt = β1·mt-1 + (1−β1)·gt 

• Update biased second moment estimate: vt = β2·vt-1 + (1−β2)·gt² 

• Compute bias-corrected estimates: m̂t = mt/(1−β1ᵗ), v̂t = vt/(1−β2ᵗ) 

• Update parameters: θt+1 = θt − α · m̂t / (√v̂t + ε) 

• Apply weight decay: θt+1 = θt+1 − α·λ·θt 

8.3 Hyperparameters 

 

Parameter Value Description 

β1 0.9 First moment decay (momentum) 

β2 0.95 Second moment decay (borrowed from GPT-2) 

ε 10⁻⁸ Prevents division by zero 

α 3×10⁻⁴ Learning rate 

λ 0.1 Weight decay coefficient 

 

 

Chapter 9: Training Loop 

9.1 The Core Loop 

 
for step in range(num_steps): 

    x, y = get_batch(data, batch_size, ctx)   # 1. Get batch 

    model.zero_grads()                         # 2. Zero gradients 

    logits = model.forward(x)                  # 3. Forward pass 

    loss, dlogits = cross_entropy_loss(...)    # 4. Compute loss 

    model.backward(dlogits)                    # 5. Backward pass 

    optimizer.step(model.params, model.grads)  # 6. Update weights 

 

9.2 Hyperparameter Guide 

 

Parameter Effect 

ctx Longer context = more memory, captures longer dependencies 

dim Larger dimension = more capacity, slower training 
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layers More layers = deeper representation, harder to train 

mlp_hidden Wider MLP = more computation per position 

batch Larger batch = more stable gradients, more memory 

lr Higher = faster but unstable; lower = slower but stable 

 

PART III: WORKING WITH BEVIALM 

 

Chapter 10: Getting Started 

10.1 Environment Setup 

BeviaLLM requires only NumPy — no heavy ML frameworks needed: 

 
python -m venv .venv 

source .venv/bin/activate 

pip install numpy 

 

10.2 Preparing Training Data 

Create or obtain a text file with at least a few thousand characters for interesting results. Good 
options include Shakespeare plays, song lyrics, code snippets, Wikipedia articles, or your own 
writing. 

10.3 Running Training 

Start with conservative settings and observe the loss decrease and samples improve over time: 

 
python main.py \ 

  --data data.txt \ 

  --ctx 64 \ 

  --dim 64 \ 

  --layers 1 \ 

  --batch 8 \ 

  --steps 2000 

 

 

Chapter 11: Experiments to Try 
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11.1 Varying Model Size 

 

Config Parameters Speed Quality 

Tiny dim=32, layers=1 Fast Poor 

Small dim=64, layers=1 Medium Okay 

Medium dim=128, layers=2 Slow Better 

 

11.2 Different Datasets 

• Code — the model learns syntax and structure 

• Poetry — watch it learn rhyme and meter patterns 

• Technical docs — observe how it captures domain terminology 

11.3 Context Window 

Longer context windows let the model consider more history but increase memory quadratically 
due to attention. Try ctx=128 or ctx=256 with smaller batches to observe the trade-offs. 

 

Chapter 12: Understanding the Code 

12.1 Debugging Tips 

• Check shapes — most bugs manifest as shape mismatches; print shapes liberally 

• Verify gradients — compare manual gradients to numerical approximations: (f(x+ε) − 
f(x−ε)) / (2ε) 

• Monitor activations — very large or NaN values indicate numerical problems 

12.2 Common Issues 

 

Problem Likely Cause 

Loss not decreasing Learning rate too high/low, data loading bug, gradient not flowing 

NaN loss Numerical overflow in softmax, learning rate too high, weight init 
issues 

Memory errors Reduce batch size or context length, check for caching memory leaks 

 

PART IV: CONCEPTUAL DEEP DIVES 
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Chapter 14: Why Attention Works 

14.1 The Lookup Table Analogy 

Think of attention as a soft lookup table. Given a query, we find which keys are most relevant 
and return a weighted combination of their values. 

 

Concept Dictionary Attention 

Key matching Exact key match Soft weighted match 

Return value Single value Weighted combination of values 

Flexibility Rigid Dynamic and learnable 

 

14.2 Information Routing 

Attention lets the model route information dynamically. For "The cat sat on the mat," when 
processing "sat," the model can attend heavily to "cat" (the subject) and less to other words. 
This dynamic routing is what makes transformers so powerful. 

14.3 Position Matters 

Without position embeddings, attention is permutation-invariant — it can't distinguish "dog bites 
man" from "man bites dog." Position embeddings break this symmetry, giving the model a sense 
of sequence order. 

 

Chapter 15: The Role of Layer Normalization 

15.1 Training Stability 

Deep networks suffer from internal covariate shift — each layer's input distribution changes 
during training as parameters update. Layer normalization stabilizes this by normalizing each 
sample independently, making training much more predictable. 

15.2 Pre-Norm vs Post-Norm 

 

Style Architecture Stability 

Post-norm 
(original) 

Attention → Add → LayerNorm → MLP → Add → 
LayerNorm 

Less stable, 
especially deep 
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Pre-norm (GPT-
2+) 

LayerNorm → Attention → Add → LayerNorm → MLP → 
Add 

More stable, 
preferred today 

 

 

Chapter 16: Understanding Backpropagation 

16.1 The Chain Rule 

All of backpropagation follows from one calculus rule: the gradient of the loss with respect to an 
input equals the upstream gradient multiplied by the local gradient. BeviaLLM makes this explicit 
through cache attributes — each layer saves what it needs for the backward pass. 

16.2 Accumulating Gradients 

When a value is used multiple times (like a shared weight), gradients accumulate. This is why 
we zero gradients before each backward pass — without zeroing, gradients from previous steps 
would incorrectly persist. 

 

APPENDICES 

 

Appendix A: Glossary 

 

Term Definition 

Attention Mechanism for weighting different parts of the input based on relevance 

Backpropagation Algorithm for computing gradients by traversing the computational graph 
backwards 

Batch Collection of samples processed together for efficiency and gradient 
stability 

Causal Constraint that a position can only attend to previous positions 

Context Window The maximum sequence length the model can process 

Cross-Entropy Loss function measuring difference between predicted and true 
distributions 

Embedding Dense vector representation of discrete tokens 

Gradient Direction of steepest increase; we move opposite to decrease loss 

Layer Normalization Stabilizes training by normalizing layer activations 



BeviaLLM Playbook Building a Language Model From Scratch 

© BeviaLLM Project  ·  corebaseit.com Page ‹#› 

Learning Rate How much to update parameters each step 

Logits Raw model outputs before applying softmax 

MLP Multi-Layer Perceptron; a feed-forward neural network 

Residual Connection Adding a layer's input to its output, enabling gradient flow 

Softmax Function converting logits to probabilities summing to 1 

Token The smallest unit the model processes (characters in our case) 

Transformer Architecture based on self-attention, introduced in 2017 

Weight Decay Regularization technique that shrinks weights toward zero 

 

Appendix C: Configuration Reference 

 

Argument Type Default Description 

--data str (required) Path to training text file 

--seed int 42 Random seed for reproducibility 

--ctx int 128 Context window length 

--dim int 128 Embedding dimension 

--layers int 2 Number of transformer blocks 

--mlp_hidden int 512 MLP hidden layer size 

--batch int 16 Batch size 

--steps int 5000 Training steps 

--lr float 3e-4 Learning rate 

--wd float 0.1 Weight decay 

--log_every int 200 Log loss every N steps 

--sample_every int 1000 Sample text every N steps 

--sample_len int 400 Length of sampled text 

 

Appendix D: Further Reading 

Foundational Papers 

• "Attention Is All You Need" (Vaswani et al., 2017) — The original transformer paper 
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• "Language Models are Unsupervised Multitask Learners" (GPT-2 paper, 2019) 

• "Language Models are Few-Shot Learners" (GPT-3 paper, 2020) 

Books 

• "Deep Learning" by Goodfellow, Bengio, and Courville 

• "Neural Networks and Deep Learning" by Michael Nielsen (free online) 

Online Resources 

• The Illustrated Transformer — Jay Alammar's blog 

• Andrej Karpathy's "Let's build GPT" video series 

• The Annotated Transformer — Harvard NLP 

 

Appendix E: Source Code Repository 

GitHub Repository 

https://github.com/Bevia/BeviaLLM 

corebaseit.com 

The complete, working implementation of everything described in this playbook. Clone it, run it, 
break it — then rebuild it. 

 

What's in the Repository 

The repository contains the full BeviaLLM Python package, training data, and IDE configuration 
for a smooth out-of-the-box experience: 

 

File / Folder Contents 

main.py CLI entry point and training loop 

data.txt Sample training corpus (character-level text) 

bevialm/__init__.py Public package API exports 

bevialm/layers.py Embedding, Linear, LayerNorm, CausalSelfAttention, 
TransformerBlock 

bevialm/model.py CharTransformerLM — the top-level model class 

bevialm/optimizer.py AdamW optimizer implemented from scratch 

bevialm/data.py load_text, build_vocab, encode, get_batch, sample 

bevialm/utils.py set_seed, softmax, cross_entropy_loss, init_weight 
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.vscode/ VS Code launch.json, settings.json, tasks.json for debug setup 

 

Getting the Code 

 
# Clone the repository 

git clone https://github.com/Bevia/BeviaLLM.git 

cd BeviaLLM 

 
# Set up environment 

python -m venv .venv 

source .venv/bin/activate   # macOS/Linux 

pip install numpy 

 
# Run training 

python main.py --data data.txt --ctx 64 --dim 64 --layers 1 --batch 8 --steps 2000 

 

What to Study in the Code 

 

File What to Study 

bevialm/layers.py How attention really works (Q, K, V, masking), LayerNorm stability, residual 
gradient flow 

bevialm/utils.py How softmax gradients behave and cross-entropy derivation 

bevialm/optimizer.py Why AdamW outperforms vanilla SGD 

bevialm/model.py Embeddings and the full forward/backward pass end-to-end 

bevialm/data.py Text sampling with temperature and batch construction 

 

Suggested Next Steps 

Once comfortable with the base implementation, these exercises deepen understanding further: 

• Implement multi-head attention (currently single-head in bevialm/layers.py) 

• Replace ReLU activation with GELU 

• Add dropout regularization 

• Implement learning rate warmup and cosine decay scheduling 

• Replace char-level tokenization with a BPE tokenizer 

• Add checkpoint saving and loading 

• Visualize attention maps during generation 

• Write unit tests for each module, verifying gradients numerically 
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Afterword 

Building a language model from scratch is a journey of discovery. Each component — from the 
humble embedding lookup to the elegant attention mechanism — contributes to the emergent 
behavior we call "language understanding." 

BeviaLLM is simply a friendly way to peek behind the curtain and understand how large 
language models like ChatGPT actually work. When you trace through the matrix 
multiplications, debug a gradient calculation, and watch the loss decrease — you build intuition 
that reading documentation alone can't provide. 

 

The Journey Ahead 

Take what you've learned here and apply it. Modify the code. Break it, fix it, extend it. The best way 
to understand deep learning is to get your hands dirty with the math.  Happy hacking! 
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