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Preface

Welcome to the BeviaLLM Playbook — a comprehensive guide to understanding and building a
GPT-like language model from the ground up using nothing but Python and NumPy.

This book is designed for developers, students, and curious minds who want to truly understand
what happens inside a language model. Instead of relying on high-level frameworks that hide
the complexity behind convenient abstractions, we implement every component manually: from
embeddings to attention mechanisms, from layer normalization to backpropagation.

What You'll Learn

How transformers process sequences of text - The mathematics behind attention mechanisms -
Manual implementation of forward and backward passes - Building an optimizer from scratch -
Training a character-level language model

Prerequisites

Comfortable with Python - Basic linear algebra (matrices, vectors) - Familiarity with calculus
(derivatives, chain rule) - Curiosity and patience

PART I: FOUNDATIONS

Chapter 1: Introduction to BeviaLLM

1.1 What is BeviaLLM?

BevialLLM is an educational implementation of a miniature GPT-like language model. Unlike
production models with billions of parameters, BeviaLLM is intentionally small — designed to
run on a laptop CPU in minutes rather than requiring GPU clusters for weeks.

The name combines "Bevia" (the creator's name) with "LLM" (Large Language Model), though
in practice it's more of an "SLM" — a Small Language Model built for learning.

1.2 Why Build From Scratch?

Modern deep learning frameworks like PyTorch and TensorFlow provide automatic
differentiation, GPU acceleration, and countless optimized layers. So why implement everything
manually?

* Understanding over convenience — when you use torch.nn.Linear you get a working
layer, but do you truly understand what happens during the backward pass?
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» Demystifying the "magic" — transformers can feel like black boxes; terms like attention,
residual connections, and layer normalization become meaningful when you implement
them with explicit matrix operations.

» Appreciation for design decisions — why does GPT use pre-normalization? Why causal
masking? Building from scratch reveals why certain choices matter.

1.3 Project Philosophy
BevialLLM follows three core principles:
* Readability over speed — the code prioritizes clarity. Every matrix operation is explicit.
Comments explain the "why," not just the "what."
* Minimal dependencies — only NumPy is required. No autograd, no CUDA, no
abstractions you can't trace with a debugger.
» Hackability — want to try a different activation function? Change one line. Want multi-
head attention? Extend the existing class.

1.4 What We're Building

By the end of this journey, you'll have a working language model that can learn patterns from
text data, generate new text resembling the training data, and demonstrate the core mechanics
of GPT-style architectures.

The model operates at the character level — predicting the next character given a sequence of
previous characters. This is simpler than word-level tokenization but illustrates the same
principles.

Chapter 2: The Transformer Architecture

2.1 A Brief History

In 2017, Vaswani et al. published "Attention Is All You Need," introducing the Transformer
architecture. This paper replaced recurrent networks with attention mechanisms, enabling
massive parallelization and setting the stage for models like GPT, BERT, and their successors.

BeviaLLM implements a decoder-only transformer, similar to GPT, processing sequences left-
to-right and predicting each next token based on all previous tokens.

2.2 The Big Picture

At a high level, here's what happens when BevialLLM processes text:

1 Tokenization Convert characters to integer indices
2 Embedding Map indices to dense vectors
3 Position Encoding Add information about token positions
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4 Transformer Blocks Process through attention and MLPs
5 Output Layer Project back to vocabulary size
6 Prediction Sample the next character from probabilities

2.3 Key Components

A single transformer block contains four key components:
» Self-Attention — allows each position to "look at" other positions in the sequence,
capturing dependencies between relevant words.

» Feed-Forward Network (MLP) — a two-layer network processing each position
independently, adding computational capacity.

* Layer Normalization — stabilizes training by normalizing activations.

* Residual Connections — allow gradients to flow directly through the network, enabling
deeper architectures.

2.4 Why "Causal"?

Our attention is "causal" because each position can only attend to itself and previous positions
— never future ones. This is essential for generation: when predicting position 5, we can't peek
at position 6.

We implement this with a mask that sets future positions to negative infinity before the softmax,
effectively zeroing their attention weights.

Chapter 3: Mathematics Behind the Model

3.1 Notation

Symbol Meaning

Batch size — number of sequences processed together

T Sequence length — context window
C Embedding dimension (also called dim)
\% Vocabulary size — number of unique tokens

3.2 Embeddings

© BevialLLM Project - corebaseit.com Page



BeviaLLM Playbook Building a Language Model From Scratch

An embedding table is a matrix of shape (V, C). To embed a token with index i, we look up the i-
th row. The backward pass for embeddings is straightforward: we accumulate gradients at the
indices that were used during the forward pass.

3.3 Attention Mechanics

Self-attention computes three projections from the input:
* Query (Q): What am | looking for?
+ Key (K): What do | contain?
* Value (V): What should | return if matched?

Attention Formula

Attention(Q, K, V) = softmax( QKT / Vdk ) - V Where dk is the dimension of the keys. The Vdk scaling
prevents dot products from becoming too large, which would push softmax into regions with tiny
gradients.

3.4 Softmax

Softmax converts raw scores (logits) into probabilities. For numerical stability, we subtract the
maximum value before exponentiating — this prevents overflow while producing identical
results.

3.5 Cross-Entropy Loss

We use cross-entropy loss to measure how well our predicted probabilities match the true next
character. The gradient of cross-entropy with respect to logits has a beautiful, elegant form:
simply subtract 1 from the probability of the correct class.

3.6 Layer Normalization
Layer normalization normalizes across features (the embedding dimension) rather than across

the batch. The learnable parameters y and 3 are initialized to 1 and 0, meaning "start
normalized, learn to denormalize if helpful."

PART II: IMPLEMENTATION DEEP DIVE

Chapter 4: Project Structure

4.1 File Organization

BevialLLM is organized as a Python package with a clean, modular structure:
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BeviaLLM/
F—— main.py # Training script
F—— data.txt Training data
}—— bevialm/
__init  .py Public API exports

data.py Data loading, encoding, sampling

model.py The CharTransformerLM class

optimizer.py AdamW implementation

|
|
| layers.py Neural network layers
|
|
|

utils.py Helper functions

4.2 Design Decisions

» Shared parameter dictionaries — instead of storing weights inside each layer object,
shared params and grads dictionaries make it easy to iterate over all parameters for
optimization.

» Cache-based backward pass — each layer stores its forward pass results in a cache
attribute, which the backward pass retrieves. Explicit dependency injection rather than
implicit graph building.

+ Naming convention — parameters are named hierarchically, like block0.attn.q.W for the
query weight matrix in the first block.

Chapter 5: Data Pipeline

5.1 Loading Text

The data pipeline starts with raw text. BeviaLLM expects a simple UTF-8 text file and builds a
character-level vocabulary by finding all unique characters, creating stoi (string-to-int) and itos
(int-to-string) mappings.

5.2 Creating Batches

Training requires random batches of sequences. For each sequence, x contains the input
tokens (positions 0 to T—1) while y contains the target tokens (positions 1 to T). This offset trains
the model to predict each next character.

5.3 Sampling from the Model

Generation works autoregressively: start with a prompt, feed the sequence to the model, get
probabilities for the next character, sample from the distribution, append the character, and
repeat.

Temperature
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Temperature controls randomness during sampling: « Low (0.5): Conservative, more repetitive *
Balanced (1.0): Natural distribution « High (1.5): Creative but chaotic

Chapter 6: Layers in Detail

6.1 The Embedding Layer

The embedding layer is deceptively simple. Forward pass: index into a weight matrix. Backward
pass: accumulate gradients at those indices. The key insight is that np.add.at handles repeated
indices correctly — if the same token appears multiple times, gradients accumulate.

6.2 The Linear Layer

A linear layer computes y = xXW + b. The backward pass derives from the chain rule, computing
gradients for W, x, and b separately. Inputs are reshaped to 2D for matrix operations, then
reshaped back.

6.3 Layer Normalization

Layer normalization's backward pass involves gradients through the scale and shift parameters
(v, B), gradients through the normalization itself, and dependencies on both mean and variance
— making it one of the more complex backward passes to implement correctly.

6.4 Causal Self-Attention

Attention is the heart of the transformer. The forward pass proceeds in six steps:

* Projectinputto Q, K, V via three separate linear layers
« Compute attention scores: QKT / Vd

* Apply causal mask: set future positions to —«

» Softmax: convert to probabilities

* Apply attention: weight values by attention probabilities
* Project output: final linear layer

6.5 The Transformer Block

A transformer block combines attention and MLP with residual connections. BeviaLLM uses
"pre-norm" style, where normalization happens before each sublayer. This tends to train more
stably than post-norm, especially for deeper networks.

X — LayerNorm — Attention — Add(z » LayerNorm — MLP - Add(x) - output
N —

residual residual
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6.6 Activation Functions

We use RelLU (Rectified Linear Unit) in the MLP: ReLU(x) = max(0, x). The backward pass is
simple: gradient passes through where x > 0, and is zero elsewhere. The binary mask is saved
during forward for use in backward.

Chapter 7: The Model Class

7.1 CharTransformerLM

The CharTransformerLM class ties everything together, managing token and position
embeddings, a stack of transformer blocks, final layer normalization, and the output projection
(language modeling head).

7.2 Forward Pass

def forwarc

tok =

self, idx):

(
,elf.fokiemb.forward(idx) # Embed tokens

ol
self.pos emb.forward(positions) # Embed positions

tok + pos # Combine

blk in self.blocks: # Through blocks
x = blk.forward(x)

self.ln f.forward (x) # Final norm

logits = s .Im head.forward (x) Project to vocab

7.3 Backward Pass

The backward pass mirrors the forward pass in reverse, traversing through the language model
head, final normalization, transformer blocks (in reverse order), and finally the embedding
layers.

Chapter 8: The AdamW Optimizer

8.1 Why AdamW?

Adam (Adaptive Moment Estimation) combines momentum (exponential moving average of
gradients) with RMSprop (exponential moving average of squared gradients). AdamW adds
decoupled weight decay, which regularizes better than L2 regularization added to the loss.
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8.2 The Algorithm

For each parameter at each step:
» Update biased first moment estimate: mt = 31-mt-1 + (1-1)-gt
* Update biased second moment estimate: vt = f2-vt-1 + (1-p2)-gt?
» Compute bias-corrected estimates: mt = mt/(1-1t), vt = vt/(1-B2t)
« Update parameters: 6t+1 = 0t — a - it / (Wt + )
* Apply weight decay: 6t+1 = 8t+1 — a-A-6t

8.3 Hyperparameters

Parameter Value Description

B1 0.9 First moment decay (momentum)

B2 0.95 Second moment decay (borrowed from GPT-2)
€ 1078 Prevents division by zero

a 3x107™ Learning rate

A 0.1 Weight decay coefficient

Chapter 9: Training Loop

9.1 The Core Loop

for step in range (num_steps) :

X, y = get batch(data, batch size, ctx) . Get batch

model.zero grads () . Zero gradients
3. Forward pass
4. Compute loss

. Backward pass

6. Update weights

9.2 Hyperparameter Guide

ctx Longer context = more memory, captures longer dependencies

dim Larger dimension = more capacity, slower training
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layers More layers = deeper representation, harder to train
mip_hidden Wider MLP = more computation per position

batch Larger batch = more stable gradients, more memory
Ir Higher = faster but unstable; lower = slower but stable

PART lll: WORKING WITH BEVIALM

Chapter 10: Getting Started

10.1 Environment Setup

BevialLLM requires only NumPy — no heavy ML frameworks needed:

python -m venv .venv

source .venv/bin/activate

pip install numpy

10.2 Preparing Training Data

Create or obtain a text file with at least a few thousand characters for interesting results. Good

options include Shakespeare plays, song lyrics, code snippets, Wikipedia articles, or your own
writing.

10.3 Running Training

Start with conservative settings and observe the loss decrease and samples improve over time:

python main.py \

-—-data data.txt \
-—ctx 64 \

--dim 64 \
--layers 1 \
--batch 8 \
--steps 2000

Chapter 11: Experiments to Try
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11.1 Varying Model Size

Parameters Speed Quality

Tiny dim=32, layers=1 Fast Poor
Small dim=64, layers=1 Medium Okay
Medium dim=128, layers=2 Slow Better

11.2 Different Datasets

» Code — the model learns syntax and structure
* Poetry — watch it learn rhyme and meter patterns
» Technical docs — observe how it captures domain terminology

11.3 Context Window

Longer context windows let the model consider more history but increase memory quadratically
due to attention. Try ctx=128 or ctx=256 with smaller batches to observe the trade-offs.

Chapter 12: Understanding the Code

12.1 Debugging Tips

» Check shapes — most bugs manifest as shape mismatches; print shapes liberally

» Verify gradients — compare manual gradients to numerical approximations: (f(x+¢) -
f(x-¢€)) / (2¢)
* Monitor activations — very large or NaN values indicate numerical problems

12.2 Common Issues

|
Problem Likely Cause

Loss not decreasing Learning rate too high/low, data loading bug, gradient not flowing

NaN loss Numerical overflow in softmax, learning rate too high, weight init
issues

Memory errors Reduce batch size or context length, check for caching memory leaks

PART IV: CONCEPTUAL DEEP DIVES
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Chapter 14: Why Attention Works

14.1 The Lookup Table Analogy

Think of attention as a soft lookup table. Given a query, we find which keys are most relevant
and return a weighted combination of their values.

Concept Dictionary Attention

Key matching Exact key match Soft weighted match

Return value Single value Weighted combination of values
Flexibility Rigid Dynamic and learnable

14.2 Information Routing

Attention lets the model route information dynamically. For "The cat sat on the mat," when
processing "sat," the model can attend heavily to "cat" (the subject) and less to other words.
This dynamic routing is what makes transformers so powerful.

14.3 Position Matters

Without position embeddings, attention is permutation-invariant — it can't distinguish "dog bites
man" from "man bites dog." Position embeddings break this symmetry, giving the model a sense
of sequence order.

Chapter 15: The Role of Layer Normalization

15.1 Training Stability

Deep networks suffer from internal covariate shift — each layer's input distribution changes
during training as parameters update. Layer normalization stabilizes this by normalizing each
sample independently, making training much more predictable.

15.2 Pre-Norm vs Post-Norm

Style Architecture Stability
Post-norm Attention —» Add — LayerNorm — MLP — Add — Less stable,
(original) LayerNorm especially deep
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Pre-norm (GPT- LayerNorm — Attention — Add — LayerNorm — MLP — More stable,
2+) Add preferred today

Chapter 16: Understanding Backpropagation

16.1 The Chain Rule

All of backpropagation follows from one calculus rule: the gradient of the loss with respect to an
input equals the upstream gradient multiplied by the local gradient. BeviaLLM makes this explicit
through cache attributes — each layer saves what it needs for the backward pass.

16.2 Accumulating Gradients

When a value is used multiple times (like a shared weight), gradients accumulate. This is why
we zero gradients before each backward pass — without zeroing, gradients from previous steps
would incorrectly persist.

APPENDICES

Appendix A: Glossary

|
Term Definition

Attention Mechanism for weighting different parts of the input based on relevance

Backpropagation Algorithm for computing gradients by traversing the computational graph
backwards

Batch Collection of samples processed together for efficiency and gradient
stability

Causal Constraint that a position can only attend to previous positions

Context Window The maximum sequence length the model can process

Cross-Entropy Loss function measuring difference between predicted and true
distributions

Embedding Dense vector representation of discrete tokens

Gradient Direction of steepest increase; we move opposite to decrease loss

Layer Normalization Stabilizes training by normalizing layer activations
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Learning Rate

Logits

MLP

Residual Connection
Softmax

Token

Transformer

Weight Decay

How much to update parameters each step

Raw model outputs before applying softmax

Multi-Layer Perceptron; a feed-forward neural network

Adding a layer's input to its output, enabling gradient flow

Function converting logits to probabilities summing to 1

The smallest unit the model processes (characters in our case)

Architecture based on self-attention, introduced in 2017

Regularization technique that shrinks weights toward zero

Appendix C: Configuration Reference

Argument | Type
--data str
--seed int
--Ctx int
--dim int
--layers int
--mlp_hidden int
--batch int
--steps int
--Ir float
--wd float
--log_every int
--sample_every int
--sample_len int

Default
(required)
42

128

128

512
16
5000
3e-4
0.1
200
1000
400

Description

Path to training text file
Random seed for reproducibility
Context window length
Embedding dimension
Number of transformer blocks
MLP hidden layer size

Batch size

Training steps

Learning rate

Weight decay

Log loss every N steps
Sample text every N steps

Length of sampled text

Appendix D: Further Reading

Foundational Papers

+ "Attention Is All You Need" (Vaswani et al., 2017) — The original transformer paper
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» "Language Models are Unsupervised Multitask Learners" (GPT-2 paper, 2019)
* "Language Models are Few-Shot Learners" (GPT-3 paper, 2020)

Books

» "Deep Learning" by Goodfellow, Bengio, and Courville
* "Neural Networks and Deep Learning" by Michael Nielsen (free online)

Online Resources

» The lllustrated Transformer — Jay Alammar's blog
* Andrej Karpathy's "Let's build GPT" video series
* The Annotated Transformer — Harvard NLP

Appendix E: Source Code Repository

GitHub Repository
https://github.com/Bevia/BeviaLlM
corebaseit.com

The complete, working implementation of everything described in this playbook. Clone it, run it,
break it — then rebuild it.

What's in the Repository

The repository contains the full BeviaLLM Python package, training data, and IDE configuration
for a smooth out-of-the-box experience:

|
File / Folder Contents

main.py CLI entry point and training loop

data.txt Sample training corpus (character-level text)

bevialm/__init__.py Public package API exports

bevialm/layers.py Embedding, Linear, LayerNorm, CausalSelfAttention,
TransformerBlock

bevialm/model.py CharTransformerLM — the top-level model class

bevialm/optimizer.py AdamW optimizer implemented from scratch

bevialm/data.py load_text, build_vocab, encode, get_batch, sample

bevialm/utils.py set_seed, softmax, cross_entropy_loss, init_weight
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.vscode/ VS Code launch.json, settings.json, tasks.json for debug setup

Getting the Code

# Clone the repository
git clone https://github.com/Bevia/BeviallM.git

cd BeviallM

# Set up environment
python -m venv .venv
source .venv/bin/activate # macOS/Linux

pip install numpy

# Run training

python main.py --data data.txt --ctx 64 --dim 64 --layers 1 --batch 8 --steps 2000

What to Study in the Code

bevialm/layers.py How attention really works (Q, K, V, masking), LayerNorm stability, residual
gradient flow

bevialm/utils.py How softmax gradients behave and cross-entropy derivation
bevialm/optimizer.py Why AdamW outperforms vanilla SGD

bevialm/model.py Embeddings and the full forward/backward pass end-to-end
bevialm/data.py Text sampling with temperature and batch construction

Suggested Next Steps
Once comfortable with the base implementation, these exercises deepen understanding further:

* Implement multi-head attention (currently single-head in bevialm/layers.py)
* Replace RelLU activation with GELU

* Add dropout regularization

* Implement learning rate warmup and cosine decay scheduling

* Replace char-level tokenization with a BPE tokenizer

» Add checkpoint saving and loading

» Visualize attention maps during generation

*  Write unit tests for each module, verifying gradients numerically
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Afterword

Building a language model from scratch is a journey of discovery. Each component — from the
humble embedding lookup to the elegant attention mechanism — contributes to the emergent
behavior we call "language understanding.”

BevialLLM is simply a friendly way to peek behind the curtain and understand how large
language models like ChatGPT actually work. When you trace through the matrix
multiplications, debug a gradient calculation, and watch the loss decrease — you build intuition
that reading documentation alone can't provide.

The Journey Ahead

Take what you've learned here and apply it. Modify the code. Break it, fix it, extend it. The best way
to understand deep learning is to get your hands dirty with the math. Happy hacking!

Bevial LM Playbook — Version 1.0 - corebaseit.com
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